Polymorphisms in fibronectin binding protein A of Staphylococcus aureus are associated with infection of cardiovascular devices.
نویسندگان
چکیده
Medical implants, like cardiovascular devices, improve the quality of life for countless individuals but may become infected with bacteria like Staphylococcus aureus. Such infections take the form of a biofilm, a structured community of bacterial cells adherent to the surface of a solid substrate. Every biofilm begins with an attractive force or bond between bacterium and substratum. We used atomic force microscopy to probe experimentally forces between a fibronectin-coated surface (i.e., proxy for an implanted cardiac device) and fibronectin-binding receptors on the surface of individual living bacteria from each of 80 clinical isolates of S. aureus. These isolates originated from humans with infected cardiac devices (CDI; n = 26), uninfected cardiac devices (n = 20), and the anterior nares of asymptomatic subjects (n = 34). CDI isolates exhibited a distinct binding-force signature and had specific single amino acid polymorphisms in fibronectin-binding protein A corresponding to E652D, H782Q, and K786N. In silico molecular dynamics simulations demonstrate that residues D652, Q782, and N786 in fibronectin-binding protein A form extra hydrogen bonds with fibronectin, complementing the higher binding force and energy measured by atomic force microscopy for the CDI isolates. This study is significant, because it links pathogenic bacteria biofilms from the length scale of bonds acting across a nanometer-scale space to the clinical presentation of disease at the human dimension.
منابع مشابه
Construction of a New Fusion Protein Vector Associated to Fibronectin Binding Protein A and Clumping Factor A Derived from Staphylococcus aureus NCTC8325
Objective(s) Staphylococcus aureus is a leading cause of many nosocomial and community acquired infections. According to many reports, antibiotic therapy can not guarantee the eradication of S. aureus infections. Thus designing an adhesin based vaccine could restrain the S. aureus infections. This study designed for construction of a new fusion protein vaccine against S. aureus infections base...
متن کاملTwo Dimensional Structural Analysis and Expression of a New Staphylococcus aureus Adhesin Based Fusion Protein
Objective(s) Staphylococcus aureus is a foremost source of numerous nosocomial and community acquired infections. Antibiotic therapy for vancomycin resistant S. aureus (VRSA) can not promise the eradication of infections. Since adhesion is the major route of infections, adhesin based vaccine could suppress S. aureus infections. Fibronectin binding protein A (FnBPA) and clumping factor A (ClfA)...
متن کاملPolymorphisms in Fibronectin Binding Proteins A and B among Staphylococcus aureus Bloodstream Isolates Are Not Associated with Arthroplasty Infection
BACKGROUND Nonsynonymous single nucleotide polymorphisms (SNPs) in fibronectin binding protein A (fnbA) of Staphylococcus aureus are associated with cardiac device infections. However, the role of fnbA SNPs in S. aureus arthroplasty infection is unknown. METHODS Bloodstream S. aureus isolates from a derivation cohort of patients at a single U.S. medical center with S. aureus bacteremia (SAB) ...
متن کاملMolecular typing of nosocomial Staphylococcus aureus strains associated to biofilm based on the coagulase and protein A gene polymorphisms
Objective(s): Staphylococcus aureus is an important bacterial pathogen responsible for a variety numbers of nosocomial and community acquired infections. Biofilm formation is regarded as an important factor in the establishment of S. aureus infection. The contribution of the genetic background of S. aureus to biofilm formation is poorly understood. The aim of the present work was to genotype S....
متن کاملDissociation rate constants of human fibronectin binding to fibronectin-binding proteins on living Staphylococcus aureus isolated from clinical patients.
Staphylococcus aureus is part of the indigenous microbiota of humans. Sometimes, S. aureus bacteria enter the bloodstream, where they form infections on implanted cardiovascular devices. A critical, first step in such infections is a bond that forms between fibronectin-binding protein (FnBP) on S. aureus and host proteins, such as fibronectin (Fn), that coat the surface of implants in vivo. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 45 شماره
صفحات -
تاریخ انتشار 2011